Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 03 2014 22:59:05
%S 1,1,1,1,1,2,1,1,1,4,1,5,16,5,6,35,1,9,1,9,10,12,1,15,107,15,479,18,
%T 578,19,965,936,27,64,21,29,2374,72,39,32,4527,33,6483,43,41,129,
%U 13942,78,18119,127,81,71,28481,220,66,55,123,713,70222,85,85970,1155,73,123542
%N Number of monomial terms in expansion of n-th coefficient of replicable function as a polynomial in [c1, c2, c3, c4, c5, c7, c8, c9, c11, c17, c19, c23].
%C f(x) = 1/x + c1*x + c2*x^2 + c3*x^3 + ... is a replicable function if and only if H(a, b) = H(c, d) whenever a*b = c*d and gcd(a, b) = gcd(c, d) where H(,) is defined by Sum_{n,m > 0} H(n, m)*x^n*y^m = log((1/x - 1/y) / (f(x) - f(y))).
%D C. J. Cummins, T. Gannon, Modular equations and the genus zero property of moonshine functions, Invent. Math. 129 (1997), no. 3, 413-443. MR1465329 (98k:11046)
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%e c6 = c4 + c2*c1 so a(6)=2, c10 = c4 + c4*c1 + c3*c2 + c2*c1 so a(10)=4. c12 = c4 + c4*c1 + 2*c3*c2 + c2*c1^2 + c2*c1 so a(12)=5.
%K nonn
%O 1,6
%A _Michael Somos_, Sep 04 2005