login
A345938
a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.
4
1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 14, 1, 12, 1, 2, 1, 8, 1, 1, 5, 16, 12, 24, 1, 18, 12, 28, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 26, 20, 42, 9, 28, 1, 24, 1, 30, 24, 1, 3, 4, 1, 48, 11, 8, 1, 56, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 70, 1, 32, 4, 66, 15
OFFSET
1,6
COMMENTS
For all squarefree n (A005117), a(n) = A160595(n), thus if there are any composite solutions to the Lehmer's totient conjecture, then they give also a such a subset of positions of 1's in this sequence that are not powers of primes. See comments in A160595.
FORMULA
a(n) = A047994(n) / A345937(n) = A047994(n) / gcd(n-1, A047994(n)).
a(2n-1) = A345948(2n-1), for all n >= 1.
MATHEMATICA
uphi[1]=1; uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]);
a[n_]:=uphi[n]/GCD[n-1, uphi[n]]; Array[a, 100] (* Giorgos Kalogeropoulos, Jun 30 2021 *)
PROG
(PARI)
A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
A345938(n) = { my(u=A047994(n)); (u/gcd(n-1, u)); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2021
STATUS
approved