login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340088
a(n) = A091732(n) / gcd(n-1, A091732(n)), where A091732 is an infinitary analog of Euler's phi function.
4
1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 6, 1, 6, 4, 1, 1, 8, 1, 12, 3, 10, 1, 6, 1, 12, 8, 2, 1, 8, 1, 15, 5, 16, 12, 24, 1, 18, 12, 4, 1, 12, 1, 30, 8, 22, 1, 30, 1, 24, 16, 12, 1, 16, 20, 18, 9, 28, 1, 24, 1, 30, 24, 5, 3, 4, 1, 48, 11, 8, 1, 24, 1, 36, 24, 18, 15, 24, 1, 60, 1, 40, 1, 36, 16, 42, 28, 10, 1, 32, 4, 66
OFFSET
1,6
COMMENTS
Conjecture: a(n) = 1 iff n = 1 or in A050376. This is an infinitary analog of Lehmer's totient conjecture from 1932.
For all i, j > 1: a(i) = a(j) => A302777(i) = A302777(j), if the above conjecture holds.
FORMULA
a(n) = A091732(n) / A340087(n) = A091732(n) / gcd(n-1, A091732(n)).
For all n >= 1, a(A084400(n)) = 1.
PROG
(PARI)
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((d<n)&&A302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
A340088(n) = { my(x=A091732(n)); (x/gcd(n-1, x)); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 31 2020
STATUS
approved