login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.
4

%I #17 Jul 04 2021 15:54:13

%S 1,1,1,1,1,2,1,1,1,4,1,6,1,6,4,1,1,8,1,12,3,10,1,14,1,12,1,2,1,8,1,1,

%T 5,16,12,24,1,18,12,28,1,12,1,30,8,22,1,30,1,24,16,12,1,26,20,42,9,28,

%U 1,24,1,30,24,1,3,4,1,48,11,8,1,56,1,36,24,18,15,24,1,60,1,40,1,36,16,42,28,70,1,32,4,66,15

%N a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

%C For all squarefree n (A005117), a(n) = A160595(n), thus if there are any composite solutions to the Lehmer's totient conjecture, then they give also a such a subset of positions of 1's in this sequence that are not powers of primes. See comments in A160595.

%H Antti Karttunen, <a href="/A345938/b345938.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A345938/a345938.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lehmer&#39;s_totient_problem">Lehmer's totient problem</a>

%F a(n) = A047994(n) / A345937(n) = A047994(n) / gcd(n-1, A047994(n)).

%F a(2n-1) = A345948(2n-1), for all n >= 1.

%t uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]);

%t a[n_]:=uphi[n]/GCD[n-1,uphi[n]];Array[a,100] (* _Giorgos Kalogeropoulos_, Jun 30 2021 *)

%o (PARI)

%o A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };

%o A345938(n) = { my(u=A047994(n)); (u/gcd(n-1, u)); };

%Y Cf. A005117, A047994, A345937, A345939.

%Y Cf. also A160595, A340088, A345948.

%K nonn

%O 1,6

%A _Antti Karttunen_, Jun 29 2021