login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299822 Product of Euler's totient and the squarefree kernel, a(n) = phi(n)*rad(n). 4
1, 2, 6, 4, 20, 12, 42, 8, 18, 40, 110, 24, 156, 84, 120, 16, 272, 36, 342, 80, 252, 220, 506, 48, 100, 312, 54, 168, 812, 240, 930, 32, 660, 544, 840, 72, 1332, 684, 936, 160, 1640, 504, 1806, 440, 360, 1012, 2162, 96, 294, 200, 1632, 624, 2756, 108, 2200, 336, 2052, 1624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A permutation of A323333. - Amiram Eldar, Sep 19 2020

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A000010(n)*A007947(n) = n*A173557(n).

Dirichlet g.f.: zeta(s-1)*Product_{p prime} (1 - 2*p^(1-s) + p^(2-s)), corrected by Vaclav Kotesovec, Dec 18 2019

Multiplicative with a(p^e) = p*(p-1)*p^(e-1).

a(n) = n*abs(A023900(n)). (Trivially rephrasing a formula in A173557.) - Omar E. Pol, Feb 19 2018

a(2^e) = 2^e. (Special case of above.) - Omar E. Pol, Feb 19 2018

A003557(n) | a(n). - R. J. Mathar, Feb 26 2018

From Vaclav Kotesovec, Dec 18 2019: (Start)

Dirichlet g.f.: zeta(s-1) * zeta(s-2) * Product_{primes p} (1 + 2*p^(3-2*s) - p^(4-2*s) - 2*p^(1-s)).

Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.2867474284344787341078927... (End)

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p-1)^2) = 2.826419... (A065485). - Amiram Eldar, Sep 19 2020

G.f. for a signed version of the sequence: Sum_{n >= 1} mu(n)*n^2*x^n/(1 - x^n)^2 = Sum_{n >= 1} (-1)^omega(n)*a(n)*x^n = x - 2*x^2 - 6*x^3 - 4*x^4 - 20*x^5 + 12*x^6 - 42*x^7 - 8*x^8 - 18*x^9 + 40*x^10 - ..., where mu(n) is the Möbius function A008683(n) and omega(n) = A001221(n) is the number of distinct primes dividing n. - Peter Bala, Mar 05 2022

MAPLE

A299822 := proc(n)

    local a, p, e, pe;

    a := 1;

    for pe in ifactors(n)[2] do

        p := pe[1] ; e:= pe[2] ;

        a := a*p*(p-1)*p^(e-1) ;

    end do:

    a ;

end proc:

seq(A299822(n), n=1..130) ;

MATHEMATICA

Array[EulerPhi[#] SelectFirst[Reverse@ Divisors@ #, SquareFreeQ] &, 58] (* Michael De Vlieger, Feb 20 2018 *)

f[p_, e_] := (p-1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)

PROG

(PARI) a(n) = eulerphi(n)*factorback(factorint(n)[, 1]); \\ Michel Marcus, Jun 24 2019

CROSSREFS

Cf. A000010, A007947, A065485, A173557, A323333.

Sequence in context: A124838 A247578 A088659 * A052100 A079579 A309243

Adjacent sequences:  A299819 A299820 A299821 * A299823 A299824 A299825

KEYWORD

nonn,mult,easy

AUTHOR

R. J. Mathar, Feb 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 09:22 EDT 2022. Contains 356021 sequences. (Running on oeis4.)