login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376835
Expansion of 1/((1-x)^4 - 8*x^4)^(1/4).
1
1, 1, 1, 1, 3, 11, 31, 71, 151, 343, 871, 2311, 6001, 15081, 37493, 94381, 241931, 625771, 1617211, 4164763, 10719793, 27674473, 71722773, 186353453, 484657729, 1260984161, 3283294561, 8559401761, 22343836711, 58391858383, 152722920691, 399719304411
OFFSET
0,5
FORMULA
a(n) = Sum_{k=0..floor(n/4)} (-8)^k * binomial(-1/4,k) * binomial(n,n-4*k).
(7 + 7*n)*a(n) + (7 + 4*n)*a(n + 1) - (15 + 6*n)*a(n + 2) + (13 + 4*n)*a(n + 3) - (n + 4)*a(n + 4) = 0. - Robert Israel, Oct 06 2024
MAPLE
f:= 1/((1-x)^4 - 8*x^4)^(1/4):
S:= series(f, x, 41):
seq(coeff(S, x, i), i=0..40); # Robert Israel, Oct 06 2024
MATHEMATICA
a[n_]:=Sum[(-8)^k * Binomial[-1/4, k] * Binomial[n, n-4*k], {k, 0, Floor[n/4]}]; Array[a, 32, 0] (* Stefano Spezia, Oct 06 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/((1-x)^4-8*x^4)^(1/4))
CROSSREFS
Cf. A004981.
Sequence in context: A071568 A097081 A093406 * A107587 A245931 A190590
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 06 2024
STATUS
approved