login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190590 Expansion of series reversion of x/(1 + x + 2*x^4). 1
1, 1, 1, 1, 3, 11, 31, 71, 157, 397, 1141, 3301, 9087, 24311, 66067, 185771, 532121, 1520889, 4316233, 12255913, 35079739, 101232419, 293236615, 849895311, 2465119669, 7167636741, 20909386941, 61162159501, 179214613111, 525803297743, 1544899158331 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..165 from Vincenzo Librandi)

Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012

FORMULA

a(n) = Sum_{j=floor((3*n+1)/4)..n} binomial(j,-3*n+4*j-1)*2^(n-j)*binomial(n,j))/n.

Recurrence: 3*(n-1)*(3*n-7)*(3*n+1)*a(n) = 3*(2*n-3)*(18*n^2 - 54*n + 29)*a(n-1) - 3*(n-2)*(54*n^2 - 216*n + 209)*a(n-2) + 54*(n-3)*(n-2)*(2*n-5)*a(n-3) + 485*(n-4)*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Aug 20 2013

a(n) ~ 6^(1/4)*sqrt(2*6^(3/4)+16)*(1+4/3*6^(1/4))^n/(24*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2013

EXAMPLE

g.f.: x + x^2 + x^3 + x^4 + 3*x^5 + 11*x^6 + 31*x^7 + ...

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[x/(1+x+2*x^4), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 20 2013 *)

PROG

(Maxima) a(n):=sum(binomial(j, -3*n+4*j-1)*2^(n-j)*binomial(n, j), j, floor((3*n+1)/4), n)/n;

(PARI) x='x+O('x^66); /* that many terms */

Vec(serreverse(x/(1+x+2*x^4))) /* show terms */ /* Joerg Arndt, May 27 2011 */

CROSSREFS

Sequence in context: A093406 A107587 A245931 * A341705 A241693 A087323

Adjacent sequences:  A190587 A190588 A190589 * A190591 A190592 A190593

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, May 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 27 05:04 EDT 2021. Contains 346305 sequences. (Running on oeis4.)