|
|
A205649
|
|
Hamming distance between twin primes.
|
|
14
|
|
|
2, 1, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 6, 1, 2, 4, 1, 1, 3, 2, 2, 4, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 7, 1, 1, 1, 1, 3, 2, 2, 1, 4, 3, 2, 2, 1, 1, 2, 4, 1, 2, 1, 1, 2, 1, 3, 6, 1, 1, 1, 2, 1, 2, 1, 1, 5, 1, 7, 3, 1, 1, 1, 1, 3, 4, 5, 2, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Twin primes for which a(n)=1 are in A122565.
Conjecture: The sequence is unbounded.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
A001359(n) == -1 (mod 2^a(n)).
|
|
MATHEMATICA
|
nn = 1000; ps = Prime[Range[nn]]; t = {}; Do[If[ps[[n]] + 2 == ps[[n + 1]], AppendTo[t, ps[[n]]]], {n, nn - 1}]; Table[b2 = IntegerDigits[t[[k]] + 2, 2]; b1 = IntegerDigits[t[[k]], 2, Length[b2]]; Total[Abs[b1 - b2]], {k, Length[t]}] (* T. D. Noe, Jan 30 2012 *)
|
|
CROSSREFS
|
Cf. A205510, A001097, A001359, A006512, A205302, A205511, A205533.
Sequence in context: A029433 A337144 A088203 * A176510 A342464 A061342
Adjacent sequences: A205646 A205647 A205648 * A205650 A205651 A205652
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Vladimir Shevelev, Jan 30 2012
|
|
STATUS
|
approved
|
|
|
|