|
|
A205510
|
|
Binary Hamming distance between prime(n) and prime(n+1).
|
|
23
|
|
|
1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 4, 2, 1, 1, 3, 3, 2, 6, 1, 3, 2, 3, 2, 3, 1, 1, 2, 2, 3, 3, 6, 2, 1, 4, 1, 2, 5, 1, 2, 4, 2, 2, 6, 1, 1, 2, 2, 4, 2, 2, 2, 4, 2, 7, 2, 2, 1, 3, 2, 1, 5, 3, 1, 3, 1, 5, 3, 2, 2, 4, 2, 1, 3, 3, 1, 6, 1, 3, 1, 4, 2, 2, 4, 2, 2, 5, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 7, 1, 3, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
We call "Hamming's twin primes" the pairs of consecutive primes (p,q) with Hamming distance 1. They are (2,3), (5,7), (17,19,), (19,23), (29,31), (41,43), (43,47), (67,71), (97,101), ..., (A205511,A205302). As in Twin Primes Conjecture, we conjecture that there exist infinitely many Hamming's twin pairs.
|
|
LINKS
|
|
|
MAPLE
|
a:= n-> add(i, i=Bits[GetBits](Bits[Xor](ithprime(n), ithprime(n+1)), 0..-1)):
|
|
MATHEMATICA
|
Table[Count[IntegerDigits[BitXor[Prime[n], Prime[n+1]], 2], 1], {n, 100}] (* Jayanta Basu, May 26 2013 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|