login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337076
Niven numbers (A005349) with a record gap to the next Niven number.
5
1, 10, 12, 63, 72, 90, 288, 378, 558, 2889, 3784, 6480, 19872, 28971, 38772, 297864, 478764, 589860, 989867, 2879865, 9898956, 49989744, 88996914, 689988915, 879987906, 989888823, 2998895823, 6998899824, 8889999624, 8988988866, 9879997824, 18879988824, 286889989806
OFFSET
1,2
COMMENTS
The corresponding record gaps are 1, 2, 6, 7, 8, 10, 12, 14, 18, 23, 32, 36, 44, 45, 54, 60, 66, 72, 88, 90, 99, 108, 126, 135, 144, 150, 153, 192, 201, 234, 258, 276, 294, ...
Kennedy and Cooper (1984) proved that the asymptotic density of the Niven numbers is 0. Therefore, this sequence is infinite.
De Koninck and Doyon proved that for sufficiently large k the least number m such that the interval[m, m+k-1] does not contain any Niven numbers is < (100*(k+2))^(k+3).
LINKS
Jean-Marie De Koninck and Nicolas Doyon, Large and Small Gaps Between Consecutive Niven Numbers, J. Integer Seqs., Vol. 6, 2003, Article 03.2.5.
R. E. Kennedy and C. N. Cooper, On the natural density of the Niven numbers, The College Mathematics Journal, Vol. 15, No. 4 (1984), pp. 309-312.
EXAMPLE
10 is a term since it is a Niven number, and the next Niven number is 12, with a gap 12 - 10 = 2, which is a record, since all the numbers below 10 are also Niven numbers.
MATHEMATICA
nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; gapmax = 0; n1 = 1; s = {}; Do[If[nivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^6}]; s
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Aug 14 2020
STATUS
approved