login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337078
The number of binary Niven numbers (A049445) not exceeding 2^n.
2
2, 3, 5, 8, 13, 21, 37, 65, 124, 232, 431, 760, 1424, 2575, 4772, 8932, 17033, 32225, 61764, 117897, 224944, 428155, 814294, 1547596, 2934212, 5572886, 10609364, 20237826, 38773350, 74609953, 144275968, 280018507, 545782822, 1064716523, 2081890937, 4068716054
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..400 (calculated using a binary version of Hiroaki Yamanouchi's Python code at A140866)
Jean-Marie De Koninck, Nicolas Doyon and Imre Kátai, On the counting function for the Niven numbers, Acta Arithmetica, Vol. 106, No. 3 (2003), 265-275.
FORMULA
a(n) ~ 2^(n+1)/n (De Koninck et al., 2003, consequence of Theorem 1).
EXAMPLE
a(1) = 2 since there are 2 binary Niven numbers not exceeding 2^1: 1 and 2.
MATHEMATICA
binNivenQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; s = {}; c = 0; p = 2; Do[If[binNivenQ[n], c++]; If[n == p, AppendTo[s, c]; p *= 2], {n, 1, 2^20}]; s
CROSSREFS
Sequence in context: A306486 A236212 A293865 * A024322 A014260 A177246
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Aug 14 2020
STATUS
approved