login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337080
Complement of A337037.
6
4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248
OFFSET
1,1
COMMENTS
Numbers with a pair of unordered factorizations whose sums of factors are the same.
All terms of the sequence are composite.
The smallest odd term of the sequence is a(174) = 675. This is a term of the sequence because 675 = 27*5*5 = 9*3*25 and 27+5+5 = 9+3+25 = 37.
Terms of the sequence are used in variations of a logic puzzle known as "Ages of Three Children Puzzle" or "Census-taker problem". For the original puzzle, see A334911.
If a number m is in the sequence, then all multiples of m are in the sequence. For example, multiples of 4 are in the sequence because there always exist at least two factorizations 4*k = 2*2*k whose factors sum to the same value 4+k = 2+2+k.
Numbers m such that A069016(m) < A001055(m). - Michel Marcus, Aug 15 2020
LINKS
Eric Weisstein's World of Mathematics, Unordered Factorization.
EXAMPLE
All unordered factorization of 90 are 90 = 45*2 = 30*3 = 18*5 = 15*6 = 15*3*2 = 10*9 = 9*5*2 = 10*3*3 = 6*5*3 = 5*3*3*2. Corresponding sums of factors are not all distinct: 90, 57, 33, 23, 21, 20, 19, 16, 16, 14, 13 because the sum 16 = 10+3+3 = 9+5+2 appears twice. Therefore 90 is in the sequence.
All unordered factorization of 30 are 30 = 15*2 = 10*3 = 6*5 = 5*3*2. Corresponding sums of factors are all distinct: 30 = 30, 17 = 15+2, 13 = 10+3, 11 = 6+5, 10 = 2+3+5. Therefore 30 is not in the sequence.
PROG
(PARI) factz(n, minn) = {my(v=[]); fordiv(n, d, if ((d>=minn) && (d<=sqrtint(n)), w = factz(n/d, d); for (i=1, #w, w[i] = concat([d], w[i]); ); v = concat(v, w); ); ); concat(v, [[n]]); }
factorz(n) = factz(n, 2);
isok(n) = my(vs = apply(x->vecsum(x), factorz(n))); #vs != #Set(vs); \\ Michel Marcus, Aug 14 2020
CROSSREFS
Cf. A334911 (census-taker numbers).
Cf. A337037 (complement), A337081.
Cf. A001055 (number of unordered factorizations of n), A074206 (number of ordered factorizations of n).
Cf. A056472 (all factorizations of n), A069016 (number of distinct sums).
Sequence in context: A191677 A076310 A161352 * A295774 A008586 A059558
KEYWORD
nonn,easy
AUTHOR
Matej Veselovac, Aug 14 2020
EXTENSIONS
Edited by N. J. A. Sloane, Sep 14 2020
STATUS
approved