login
Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.
7

%I #9 Jul 03 2022 23:56:28

%S 1,1,2,3,6,10,16,26,42,64,100,150,224,330,482,697,999,1418,1996,2794,

%T 3879,5355,7343,10018,13583,18338,24618,32917,43790,58043,76591,

%U 100716,131906,172194,223966,290423,375318,483668,621368,796138,1017146

%N Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.

%C If a partition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of partitions.

%e The a(0) = 1 through a(5) = 10 pairs:

%e ()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5)

%e (11)(1) (21)(21) (31)(31) (41)(41)

%e (111)(1) (22)(2) (32)(32)

%e (211)(11) (311)(11)

%e (211)(21) (311)(31)

%e (1111)(1) (221)(21)

%e (221)(22)

%e (2111)(11)

%e (2111)(21)

%e (11111)(1)

%t Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,IntegerPartitions[n]}],{n,0,15}]

%Y With multiplicity we have A339006.

%Y The version for compositions is A355384.

%Y The homogeneous version w/o containment is A355385, compositions A355388.

%Y A001970 counts multiset partitions of partitions.

%Y A063834 counts partitions of each part of a partition.

%Y Splitting partitions: A072706, A316245, A317715, A318683, A318684, A319794, A323433, A323583, A336131-A336136.

%Y Cf. A000009, A022811, A032020, A070933, A181591, A181819, A319910, A355382.

%K nonn

%O 0,3

%A _Gus Wiseman_, Jul 02 2022