|
|
A280908
|
|
Expansion of Product_{k>=1} ((1+x^k) / ((1-x^(2*k-1)) * (1-x^(8*k-4)))).
|
|
1
|
|
|
1, 2, 3, 6, 10, 16, 25, 38, 56, 82, 118, 166, 233, 322, 440, 598, 804, 1072, 1422, 1872, 2449, 3188, 4126, 5312, 6810, 8690, 11040, 13974, 17618, 22130, 27707, 34572, 43000, 53328, 65942, 81312, 100004, 122674, 150110, 183254, 223200, 271248, 328945, 398086
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook Part II, Springer, 2009. [Entry 1.7.5]
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ sqrt(3)*Pi * BesselI(1, sqrt(12*n+3)*Pi/4) / (4*sqrt(8*n+2)).
a(n) ~ 3^(1/4) * exp(sqrt(3*n)*Pi/2) / (8*sqrt(2)*n^(3/4)) * (1 + (Pi/16 - 1/(4*Pi))*sqrt(3/n) + (3*Pi^2/512 - 5/(32*Pi^2) - 15/64)/n).
|
|
MATHEMATICA
|
nmax = 50; CoefficientList[Series[Product[(1+x^k) / ((1-x^(2*k-1)) * (1-x^(8*k-4))), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|