|
|
A260599
|
|
Expansion of psi(x^4) / chi(-x)^2 in powers of x where psi(), chi() are Ramanujan theta functions.
|
|
1
|
|
|
1, 2, 3, 6, 10, 16, 25, 38, 55, 80, 115, 160, 223, 306, 415, 560, 747, 988, 1301, 1700, 2206, 2850, 3661, 4676, 5950, 7536, 9500, 11936, 14936, 18620, 23141, 28662, 35386, 43566, 53480, 65466, 79937, 97356, 118277, 143370, 173391, 209232, 251966, 302806
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Expansion of f(-x^4)^4 / (f(-x)^2 * phi(x^2)) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^2)^2 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 2, 0, 2, 1, 2, 0, 2, -1, ...].
|
|
EXAMPLE
|
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + ...
G.f. = q^7 + 2*q^19 + 3*q^31 + 6*q^43 + 10*q^55 + 16*q^67 + 25*q^79 + ...
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)), {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^4 / (QPochhammer[ x]^2 EllipticTheta[ 3, 0, x^2]), {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1+x^k)^2 * (1-x^(8*k))^2 / (1-x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))};
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|