login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A260597
Primes as they occur for the first time as factors of terms of A173426 = concatenation(1,2,...,n,n-1,...,1).
1
11, 3, 37, 101, 41, 271, 7, 13, 239, 4649, 73, 137, 333667, 12345678910987654321, 17636684157301569664903, 2799473675762179389994681, 1109, 4729, 2354041513534224607850261, 571, 3167, 10723, 439781, 2068140300159522133, 75401, 687437, 759077450603
OFFSET
1,1
COMMENTS
Or, distinct elements of A260589 in the order they occur for the first time.
LINKS
M. F. Hasler and Chai Wah Wu, Table of n, a(n) for n = 1..114 (a(n) for n = 1..84 from M. F. Hasler)
EXAMPLE
A173426(1) = 1; A173426(2) = 121 = 11^2 => a(1) = 11.
A173426(3) = 12321 = 3^2 37^2 => a(2..3) = (3, 37).
A173426(4) = 1234321 = 11^2 101^2 => a(4) = 101.
A173426(5) = 123454321 = 41^2 271^2 => a(5..6) = (41, 271).
A173426(6) = 12345654321 = 3^2 7^2 11^2 13^2 37^2 => a(7..8) = (7, 13).
PROG
(PARI) S=[]; apply(t->S=setunion(S, t=setminus(Set(t), S)); t, vector(30, n, A260589_row(n)))
(Python)
from sympy import primefactors
A260597_list = []
for n in range(1, 10):
m = primefactors(int(''.join([str(d) for d in range(1, n+1)]+[str(d) for d in range(n-1, 0, -1)])))
for p in m:
if not p in A260597_list:
A260597_list.append(p) # Chai Wah Wu, Aug 11 2015
CROSSREFS
Sequence in context: A298927 A102380 A204845 * A147555 A157883 A038317
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jul 29 2015
STATUS
approved