login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260596
Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12, n,k >= 1.
0
1, 3, 2, 4, 10, 6, 5, 14, 38, 22, 7, 18, 54, 150, 86, 8, 26, 70, 214, 598, 342, 9, 30, 102, 278, 854, 2390, 1366, 11, 34, 118, 406, 1110, 3414, 9558, 5462, 12, 42, 134, 470, 1622, 4438, 13654, 38230, 21846, 13, 46, 166, 534, 1878, 6486, 17750, 54614, 152918, 87382
OFFSET
1,2
COMMENTS
Sequence is a permutation of the natural numbers.
Is this array the same as the dispersion A191668?
FORMULA
T(n,k) = A(n-k+1,k) = (8 + (3*floor((4*(n-k+1) + 1)/3) - 2)*4^k)/12, n >= k >=1.
EXAMPLE
Array A begins:
. 1 2 6 22 86 342 1366 5462 21846 87382
. 3 10 38 150 598 2390 9558 38230 152918 611670
. 4 14 54 214 854 3414 13654 54614 218454 873814
. 5 18 70 278 1110 4438 17750 70998 283990 1135958
. 7 26 102 406 1622 6486 25942 103766 415062 1660246
. 8 30 118 470 1878 7510 30038 120150 480598 1922390
. 9 34 134 534 2134 8534 34134 136534 546134 2184534
. 11 42 166 662 2646 10582 42326 169302 677206 2708822
. 12 46 182 726 2902 11606 46422 185686 742742 2970966
. 13 50 198 790 3158 12630 50518 202070 808278 3233110
...
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 3 2
3: 4 10 6
4: 5 14 38 22
5: 7 18 54 150 86
6: 8 26 70 214 598 342
7: 9 30 102 278 854 2390 1366
8: 11 34 118 406 1110 3414 9558 5462
9: 12 42 134 470 1622 4438 13654 38230 21846
10:13 46 166 534 1878 6486 17750 54614 152918 87382
... Triangle formatted by Wolfdieter Lang, Aug 16 2015.
MATHEMATICA
(* Array: *)
Grid[Table[(8 + (3*Floor[(4*n + 1)/3] - 2)*4^k)/12, {n, 10}, {k, 10}]]
(* Array antidiagonals flattened: *)
Flatten[Table[(8 + (3*Floor[(4*(n - k) + 5)/3] - 2)*4^k)/12, {n, 10}, {k, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Jul 29 2015
EXTENSIONS
Edited: Wolfdieter Lang, Aug 16 2015
STATUS
approved