login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12, n,k >= 1.
0

%I #7 Aug 16 2015 17:20:23

%S 1,3,2,4,10,6,5,14,38,22,7,18,54,150,86,8,26,70,214,598,342,9,30,102,

%T 278,854,2390,1366,11,34,118,406,1110,3414,9558,5462,12,42,134,470,

%U 1622,4438,13654,38230,21846,13,46,166,534,1878,6486,17750,54614,152918,87382

%N Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12, n,k >= 1.

%C Sequence is a permutation of the natural numbers.

%C Is this array the same as the dispersion A191668?

%F T(n,k) = A(n-k+1,k) = (8 + (3*floor((4*(n-k+1) + 1)/3) - 2)*4^k)/12, n >= k >=1.

%e Array A begins:

%e . 1 2 6 22 86 342 1366 5462 21846 87382

%e . 3 10 38 150 598 2390 9558 38230 152918 611670

%e . 4 14 54 214 854 3414 13654 54614 218454 873814

%e . 5 18 70 278 1110 4438 17750 70998 283990 1135958

%e . 7 26 102 406 1622 6486 25942 103766 415062 1660246

%e . 8 30 118 470 1878 7510 30038 120150 480598 1922390

%e . 9 34 134 534 2134 8534 34134 136534 546134 2184534

%e . 11 42 166 662 2646 10582 42326 169302 677206 2708822

%e . 12 46 182 726 2902 11606 46422 185686 742742 2970966

%e . 13 50 198 790 3158 12630 50518 202070 808278 3233110

%e ...

%e The triangle T(n, k) begins:

%e n\k 1 2 3 4 5 6 7 8 9 10 ...

%e 1: 1

%e 2: 3 2

%e 3: 4 10 6

%e 4: 5 14 38 22

%e 5: 7 18 54 150 86

%e 6: 8 26 70 214 598 342

%e 7: 9 30 102 278 854 2390 1366

%e 8: 11 34 118 406 1110 3414 9558 5462

%e 9: 12 42 134 470 1622 4438 13654 38230 21846

%e 10:13 46 166 534 1878 6486 17750 54614 152918 87382

%e ... Triangle formatted by _Wolfdieter Lang_, Aug 16 2015.

%t (* Array: *)

%t Grid[Table[(8 + (3*Floor[(4*n + 1)/3] - 2)*4^k)/12, {n, 10}, {k, 10}]]

%t (* Array antidiagonals flattened: *)

%t Flatten[Table[(8 + (3*Floor[(4*(n - k) + 5)/3] - 2)*4^k)/12, {n, 10}, {k, n}]]

%Y Cf. A000302, A042965, A016825, A191668.

%K nonn,tabl

%O 1,2

%A _L. Edson Jeffery_, Jul 29 2015

%E Edited: _Wolfdieter Lang_, Aug 16 2015