login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157883
Numerator of Bernoulli(n, 2/5).
2
1, -1, -11, 3, 91, -43, -12347, 1183, 62851, -54423, -39448591, 3799763, 27287144401, -375591203, -34562009741, 49954996743, 89299092717107, -8604866798383, -135379643536733633, 1863607913992123, 2694379428323830241, -495661415843787963, -1648224141847799919403
OFFSET
0,3
COMMENTS
From Wolfdieter Lang, Jul 05 2017: (Start)
a(n) gives also the numerators of the generalized Bernoulli numbers B[5,2](n) = 5^n*Bernoulli(n, 2/5) with the Bernoulli polynomials B(n, x) = Bernoulli(n, x) from A196838/A196839 or A053382/A053383. For the denominators see A288872(n) = A157867(n)/5^n. See a comment under A157866 for B[d,a](n).
(-1)^n*a(n) gives the numerators of the generalized Bernoulli numbers B[5,3](n); the denominators are A288872(n).
(End)
LINKS
MATHEMATICA
Table[Numerator[BernoulliB[n, 2/5]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)
PROG
(PARI) a(n) = numerator(subst(bernpol(n, x), x, 2/5)); \\ Michel Marcus, Jul 06 2017
(Python)
from sympy import bernoulli, Integer
def a(n): return bernoulli(n, Integer(2)/5).numerator()
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 06 2017
CROSSREFS
For denominators see A157867.
Cf. A288872.
Sequence in context: A204845 A260597 A147555 * A038317 A157781 A069869
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 08 2009
STATUS
approved