login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288872 Denominators for generalized Bernoulli numbers B[5,j](n), for j=1..4, n >= 0. 3
1, 2, 6, 1, 6, 1, 42, 1, 6, 1, 66, 1, 546, 1, 6, 1, 102, 1, 798, 1, 66, 1, 138, 1, 546, 1, 6, 1, 174, 1, 14322, 1, 102, 1, 6, 1, 383838, 1, 6, 1, 2706, 1, 1806, 1, 138, 1, 282, 1, 9282, 1, 66, 1, 318, 1, 798, 1, 174, 1, 354, 1, 11357346, 1, 6, 1, 102, 1, 64722, 1, 6, 1, 4686 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See, e.g., A157871 for details on B[d,a](n) with gcd(d,a) = 1.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10101

Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.

MATHEMATICA

Table[Denominator[BernoulliB[n, 1/5]]/5^n, {n, 0, 70}] (* Jean-Fran├žois Alcover, Sep 24 2018, from PARI *)

PROG

(PARI) a(n)=denominator(subst(bernpol(n, x), x, 1/5))/5^n; \\ Michel Marcus, Jul 06 2017

(Python)

from sympy import bernoulli

def a(n): return bernoulli(n, 1/Integer(5)).denominator()//(5**n)

print([a(n) for n in range(41)]) # Indranil Ghosh, Jul 06 2017

CROSSREFS

Cf. A027642 (denominators B[1,0]), A141459 (denominators B[2,1]), A285068 (denominators B[3,1] and B[3,2]), A141459 (denominators B[4,1] and B[4,3]).

For the numerators of B[5,j](n), for j=1..4, see A157866(n), A157883(n), (-1)^n*A157883(n), (-1)^n*A157866(n), respectively.

Cf. A157871.

Sequence in context: A199953 A076039 A280580 * A329207 A191100 A322944

Adjacent sequences:  A288869 A288870 A288871 * A288873 A288874 A288875

KEYWORD

nonn,frac

AUTHOR

Wolfdieter Lang, Jul 05 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 15:40 EDT 2021. Contains 347643 sequences. (Running on oeis4.)