login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A288872
Denominators for generalized Bernoulli numbers B[5,j](n), for j=1..4, n >= 0.
3
1, 2, 6, 1, 6, 1, 42, 1, 6, 1, 66, 1, 546, 1, 6, 1, 102, 1, 798, 1, 66, 1, 138, 1, 546, 1, 6, 1, 174, 1, 14322, 1, 102, 1, 6, 1, 383838, 1, 6, 1, 2706, 1, 1806, 1, 138, 1, 282, 1, 9282, 1, 66, 1, 318, 1, 798, 1, 174, 1, 354, 1, 11357346, 1, 6, 1, 102, 1, 64722, 1, 6, 1, 4686
OFFSET
0,2
COMMENTS
See, e.g., A157871 for details on B[d,a](n) with gcd(d,a) = 1.
MATHEMATICA
Table[Denominator[BernoulliB[n, 1/5]]/5^n, {n, 0, 70}] (* Jean-François Alcover, Sep 24 2018, from PARI *)
PROG
(PARI) a(n)=denominator(subst(bernpol(n, x), x, 1/5))/5^n; \\ Michel Marcus, Jul 06 2017
(Python)
from sympy import bernoulli
def a(n): return bernoulli(n, 1/Integer(5)).denominator()//(5**n)
print([a(n) for n in range(41)]) # Indranil Ghosh, Jul 06 2017
CROSSREFS
Cf. A027642 (denominators B[1,0]), A141459 (denominators B[2,1]), A285068 (denominators B[3,1] and B[3,2]), A141459 (denominators B[4,1] and B[4,3]).
For the numerators of B[5,j](n), for j=1..4, see A157866(n), A157883(n), (-1)^n*A157883(n), (-1)^n*A157866(n), respectively.
Cf. A157871.
Sequence in context: A364682 A076039 A280580 * A329207 A191100 A364708
KEYWORD
nonn,frac
AUTHOR
Wolfdieter Lang, Jul 05 2017
STATUS
approved