Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Dec 06 2018 06:52:17
%S 0,1,1,2,1,3,1,4,2,5,1,8,1,7,3,11,1,14,2,18,7,21,6,35,14,43,28,65,42,
%T 96,70,141,120,205,187,315,286,445,445,657
%N Number of integer partitions of n with vertex-connectivity 1.
%C The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/K-vertex-connected_graph">k-vertex-connected graph</a>
%e The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222).
%e The a(18) = 14 integer partitions:
%e (9,9), (16,2),
%e (8,8,2), (10,6,2),
%e (8,4,4,2), (9,3,3,3),
%e (4,4,4,4,2), (8,4,2,2,2),
%e (3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2),
%e (4,4,2,2,2,2,2),
%e (4,2,2,2,2,2,2,2),
%e (2,2,2,2,2,2,2,2,2).
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
%t Table[Length[Select[IntegerPartitions[n],vertConn[#]==1&]],{n,20}]
%Y Cf. A013922, A054921, A095983, A304714, A304716, A305078, A305079, A322335, A322338, A322387, A322389, A322391.
%K nonn,more
%O 1,4
%A _Gus Wiseman_, Dec 05 2018