OFFSET
0,6
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.
LINKS
EXAMPLE
Positions of first appearances of each integer together with the corresponding set-systems:
0: {}
1: {{1}}
5: {{1},{1,2}}
21: {{1},{1,2},{1,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
341: {{1},{1,2},{1,3},{1,4},{1,2,3}}
1365: {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4}}
5461: {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=Length[sys]-Max@@Length/@Select[Subsets[sys], Length[csm[#]]!=1&];
Table[eConn[bpe/@bpe[n]], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 25 2019
STATUS
approved