OFFSET
1,3
COMMENTS
By a result of Koblitz and Ogus, a(n) is an upper bound on the number of values Gamma(k/n) (k a positive integer) that are multiplicatively independent over the algebraic numbers.
LINKS
P. Deligne (with an appendix by N. Koblitz and A. Ogus), Valeurs de fonctions L et périodes d'intégrales, Proceedings of Symposia in Pure Mathematics, 33 (1979), 313-346.
PROG
(SageMath)
def a(n):
M=[[u*k%n for u in range(n) if gcd(u, n)==1] for k in range(n)]
return matrix(M).rank()
CROSSREFS
KEYWORD
nonn
AUTHOR
Julian Rosen, Oct 19 2019
STATUS
approved