

A054924


Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled connected graphs with n nodes and k edges (n >= 1, 0 <= k <= n(n1)/2).


15



1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 3, 5, 5, 4, 2, 1, 1, 0, 0, 0, 0, 0, 6, 13, 19, 22, 20, 14, 9, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 11, 33, 67, 107, 132, 138, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 23, 89, 236, 486, 814, 1169, 1454, 1579, 1515, 1290, 970, 658, 400, 220, 114
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,11


REFERENCES

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.


LINKS

R. W. Robinson, Rows 1 to 20 of triangle, flattened
G. A. Baker et al., Hightemperature expansions for the spin1/2 Heisenberg model, Phys. Rev., 164 (1967), 800817.
Gordon Royle, Small graphs
M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967


EXAMPLE

Triangle begins:
1;
0,1;
0,0,1,1;
0,0,0,2,2,1,1;
0,0,0,0,3,5,5,4,2,1,1;
0,0,0,0,0,6,13,19,22,20,14,9,5,2,1,1;
the last batch giving the numbers of connected graphs with 6 nodes and from 0 to 15 edges.


MATHEMATICA

A076263 gives a Mathematica program which produces the nonzero entries in each row.
Needs["Combinatorica`"]; Table[Print[row = Join[Array[0&, n1], Table[ Count[ Combinatorica`ListGraphs[n, k], g_ /; Combinatorica`ConnectedQ[g]], {k, n1, n*(n1)/2}]]]; row, {n, 1, 8}] // Flatten (* JeanFrançois Alcover, Jan 15 2015 *)


CROSSREFS

Cf. A008406, A054925.
Other versions of this triangle: A046751, A076263, A054923, A046742.
Row sums give A001349, column sums give A002905. A046751 is essentially the same triangle. A054923 and A046742 give same triangle but read by columns.
Main diagonal is A000055. Next diagonal is A001429. Largest entry in each row gives A001437.
Sequence in context: A326787 A246271 A049334 * A046751 A124478 A030353
Adjacent sequences: A054921 A054922 A054923 * A054925 A054926 A054927


KEYWORD

nonn,easy,nice,tabf


AUTHOR

N. J. A. Sloane


STATUS

approved



