login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A216953
Triangle read by rows: T(n,k) (n>=1, 1<=k<=n) = number of binary sequences of length n with minimal period k.
2
2, 2, 2, 2, 0, 6, 2, 2, 0, 12, 2, 0, 0, 0, 30, 2, 2, 6, 0, 0, 54, 2, 0, 0, 0, 0, 0, 126, 2, 2, 0, 12, 0, 0, 0, 240, 2, 0, 6, 0, 0, 0, 0, 0, 504, 2, 2, 0, 0, 30, 0, 0, 0, 0, 990, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2046, 2, 2, 6, 12, 0, 54, 0, 0, 0, 0, 0, 4020, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8190, 2, 2, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 0, 16254
OFFSET
1,1
REFERENCES
For references see A027375.
LINKS
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], Dec 25 2012.
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
FORMULA
If k divides n, T(n,k) = A027375(k), otherwise 0.
EXAMPLE
Triangle begins:
2,
2, 2,
2, 0, 6,
2, 2, 0, 12,
2, 0, 0, 0, 30,
2, 2, 6, 0, 0, 54,
2, 0, 0, 0, 0, 0, 126,
2, 2, 0, 12, 0, 0, 0, 240,
2, 0, 6, 0, 0, 0, 0, 0, 504,
2, 2, 0, 0, 30, 0, 0, 0, 0, 990,
...
For n=4 the 16 sequences are:
0000, 1111, period 1,
0101, 1010, period 2,
and the rest have period 4.
MAPLE
with(numtheory): A027375:=n->add( mobius(d)*2^(n/d), d in divisors(n));
a:=proc(n, k) global A027375;
if n mod k = 0 then A027375(k) else 0; fi; end;
MATHEMATICA
a027375[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&];
T[n_, k_] := If[Divisible[n, k], a027375[k], 0];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 26 2017 *)
CROSSREFS
Cf. A027375 (the main diagonal), A216954, A001037.
Sequence in context: A268242 A362932 A309509 * A326786 A276206 A334222
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Sep 25 2012
STATUS
approved