The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232189 Numbers k with same last four digits as p, prime(k)=p. 3
 9551, 15103, 18697, 23071, 24833, 48229, 53853, 58681, 83819, 91617, 93909, 107647, 115259, 120487, 126497, 156991, 160681, 162857, 177477, 181833, 189143, 194229, 208679, 213703, 221569, 223047, 225191, 229499, 252247, 259379, 270701, 274247, 276381, 279919, 280599 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS k such that prime(k)-k == 0 (mod 10000). - Robert Israel, Jul 02 2015 LINKS Robert Israel, Table of n, a(n) for n = 1..607 (all entries with prime < 10^8) EXAMPLE 18697 and prime(18697)= 208697, both end with 8697. MAPLE Primes:= select(isprime, [2, seq(2*i+1, i=1..10^6)]): select(t -> Primes[t]-t mod 10^4=0, [\$1..nops(Primes)]); # Robert Israel, Jul 02 2015 MATHEMATICA Select[Range[1230, 300000], Mod[#, 10^4] == Mod[Prime@ #, 10^4] &] (* or *) Select[Range[1230, 300000], Take[IntegerDigits@ #, -4] == Take[IntegerDigits@ Prime@ #, -4] &] (* Michael De Vlieger, Jul 02 2015 *) PROG (PARI) {p=10007; n=1230; while(n<10^6, p=nextprime(p+1); n=n+1; if(p%10^4==n%10^4, print1(n, ", ")))} (MATLAB) P = primes(10^7); R = mod(P - [1:size(P, 2)], 10000); find(R==0)  % Robert Israel, Jul 02 2015 CROSSREFS Cf. A067838, A067841, A232188. Sequence in context: A161002 A134117 A353088 * A271046 A162029 A251909 Adjacent sequences:  A232186 A232187 A232188 * A232190 A232191 A232192 KEYWORD nonn,base,less AUTHOR Antonio Roldán, Nov 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 21:56 EDT 2022. Contains 354092 sequences. (Running on oeis4.)