login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232189 Numbers k with same last four digits as p, prime(k)=p. 3
9551, 15103, 18697, 23071, 24833, 48229, 53853, 58681, 83819, 91617, 93909, 107647, 115259, 120487, 126497, 156991, 160681, 162857, 177477, 181833, 189143, 194229, 208679, 213703, 221569, 223047, 225191, 229499, 252247, 259379, 270701, 274247, 276381, 279919, 280599 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

k such that prime(k)-k == 0 (mod 10000). - Robert Israel, Jul 02 2015

LINKS

Robert Israel, Table of n, a(n) for n = 1..607 (all entries with prime < 10^8)

EXAMPLE

18697 and prime(18697)= 208697, both end with 8697.

MAPLE

Primes:= select(isprime, [2, seq(2*i+1, i=1..10^6)]):

select(t -> Primes[t]-t mod 10^4=0, [$1..nops(Primes)]); # Robert Israel, Jul 02 2015

MATHEMATICA

Select[Range[1230, 300000], Mod[#, 10^4] == Mod[Prime@ #, 10^4] &]

(* or *)

Select[Range[1230, 300000], Take[IntegerDigits@ #, -4] == Take[IntegerDigits@ Prime@ #, -4] &] (* Michael De Vlieger, Jul 02 2015 *)

PROG

(PARI) {p=10007; n=1230; while(n<10^6, p=nextprime(p+1); n=n+1; if(p%10^4==n%10^4, print1(n, ", ")))}

(MATLAB)

P = primes(10^7);

R = mod(P - [1:size(P, 2)], 10000);

find(R==0)  % Robert Israel, Jul 02 2015

CROSSREFS

Cf. A067838, A067841, A232188.

Sequence in context: A252512 A161002 A134117 * A271046 A162029 A251909

Adjacent sequences:  A232186 A232187 A232188 * A232190 A232191 A232192

KEYWORD

nonn,base,less

AUTHOR

Antonio Roldán, Nov 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 21 13:51 EST 2018. Contains 297994 sequences.