OFFSET
1,1
COMMENTS
k such that prime(k)-k == 0 (mod 10000). - Robert Israel, Jul 02 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..607 (all entries with prime < 10^8)
EXAMPLE
18697 and prime(18697)= 208697, both end with 8697.
MAPLE
Primes:= select(isprime, [2, seq(2*i+1, i=1..10^6)]):
select(t -> Primes[t]-t mod 10^4=0, [$1..nops(Primes)]); # Robert Israel, Jul 02 2015
MATHEMATICA
Select[Range[1230, 300000], Mod[#, 10^4] == Mod[Prime@ #, 10^4] &]
(* or *)
Select[Range[1230, 300000], Take[IntegerDigits@ #, -4] == Take[IntegerDigits@ Prime@ #, -4] &] (* Michael De Vlieger, Jul 02 2015 *)
PROG
(PARI) {p=10007; n=1230; while(n<10^6, p=nextprime(p+1); n=n+1; if(p%10^4==n%10^4, print1(n, ", ")))}
(MATLAB)
P = primes(10^7);
R = mod(P - [1:size(P, 2)], 10000);
find(R==0) % Robert Israel, Jul 02 2015
CROSSREFS
KEYWORD
nonn,base,less
AUTHOR
Antonio Roldán, Nov 20 2013
STATUS
approved