login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182927
Row sums of A182928.
6
1, 0, 3, -8, 25, -99, 721, -5704, 40881, -340325, 3628801, -41245511, 479001601, -6129725315, 87212177053, -1317906346184, 20922789888001, -354320889234597, 6402373705728001, -121882630320799633, 2432928081076384321, -51041048673495232715
OFFSET
1,3
COMMENTS
The number of partitions of an n-set with distinct block sizes can
be computed recursively as A007837(0) = 1 and A007837(n) = - Sum_{1<=k<=n} binomial(n-1,k-1) * A182927(k) * A007837(n-k).
Möbius inversion yields: 1, -1, 2, -8, 24, -101, 720, -5696, 40878,...
A182927(2*i+1) = A182926(2*i+1)
FORMULA
a(n) = Sum_{d|n} -n!/(d*(-(n/d)!)^d).
E.g.f.: Sum_{k>=1} log(1 + x^k/k!). - Ilya Gutkovskiy, May 21 2019
EXAMPLE
a(6) = 1 - 10 + 30 - 120 = -99.
MAPLE
A182927 := proc(n) local d;
add(-n! / (d*(-(n/d)!)^d), d = numtheory[divisors](n)) end:
seq(A182927(i), i = 1..22);
MATHEMATICA
a[n_] := Sum[ -n!/(d*(-(n/d)!)^d), {d, Divisors[n]}]; Table[a[n], {n, 1, 22}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Apr 16 2011
STATUS
approved