login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182926
Row sums of absolute values of A182928.
6
1, 2, 3, 10, 25, 161, 721, 5706, 40881, 385687, 3628801, 41268613, 479001601, 6324319717, 87212177053, 1317906346186, 20922789888001, 357099708702023, 6402373705728001, 121882752536893635, 2432928081076384321, 51140835669924352717
OFFSET
1,2
COMMENTS
The sum of multinomial coefficients can be computed recursively as
A005651(0) = 1 and A005651(n) = Sum_{1<=k<=n} binomial(n-1,k-1) * A182926(k) * A005651(n-k).
Möbius inversion yields: 1, 1, 2, 8, 24, 157, 720, 5696, 40878,...
A182927(2*i+1) = A182926(2*i+1).
LINKS
FORMULA
a(n) = Sum_{d|n} n!/(d*((n/d)!)^d).
E.g.f.: Sum_{k>=1} log(1/(1 - x^k/k!)). - Ilya Gutkovskiy, May 21 2019
EXAMPLE
a(6) = 1 + 10 + 30 + 120 = 161.
MAPLE
A182926 := proc(n) local d;
add(n!/(d*((n/d)!)^d), d = numtheory[divisors](n)) end:
seq(A182926(i), i = 1..22);
MATHEMATICA
a[n_] := Sum[ Abs[ -n!/(d*(-(n/d)!)^d)], {d, Divisors[n]}]; Table[ a[n], {n, 1, 22}] (* Jean-François Alcover, Jul 29 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 16 2011
STATUS
approved