The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182925 Generalized vertical Bell numbers of order 3. 4
 1, 15, 1657, 513559, 326922081, 363303011071, 637056434385865, 1644720885001919607, 5943555582476814384769, 28924444943026683877502191, 183866199607767992029159792281, 1489437787210535537087417039489815 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The name "generalized 'vertical' Bell numbers" is used to distinguish them from the generalized (horizontal) Bell numbers with reference to the square array representation of the generalized Bell numbers as given in A090210. a(n) is column 4 in this representation. The order is the parameter M in Penson et al., p. 6, eq. 29. LINKS G. C. Greubel, Table of n, a(n) for n = 0..168 P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, (2010). K. A. Penson, P. Blasiak, A. Horzela, A. I. Solomon and G. H. E. Duchamp, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. 50, 083512 (2009). FORMULA a(n) = exp(-1)*Gamma(n+1)^3*[3F3]([n+1, n+1, n+1], [1, 1, 1] | 1); here [3F3] is the generalized hypergeometric function of type 3F3. Let B_{n}(x) = Sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 4! [x^4] taylor(B_{n}(x)), where [x^4] denotes the coefficient of x^4 in the Taylor series for B_{n}(x). MAPLE A182925 := proc(n) exp(-x)*GAMMA(n+1)^3*hypergeom([n+1, n+1, n+1], [1, 1, 1], x); round(evalf(subs(x=1, %), 64)) end; seq(A182925(i), i=0..11); MATHEMATICA u = 1.`64; a[n_] := n!^3*HypergeometricPFQ[{n+u, n+u, n+u}, {u, u, u}, u]/E // Round; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Nov 22 2012, after Maple *) CROSSREFS Cf. A090210, A002720, A069948, A182924. Sequence in context: A249964 A281801 A208000 * A208020 A205423 A263600 Adjacent sequences: A182922 A182923 A182924 * A182926 A182927 A182928 KEYWORD nonn AUTHOR Peter Luschny, Mar 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 01:51 EST 2023. Contains 367541 sequences. (Running on oeis4.)