The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005225 Number of permutations of length n with equal cycles. (Formerly M0903) 19
 1, 2, 3, 10, 25, 176, 721, 6406, 42561, 436402, 3628801, 48073796, 479001601, 7116730336, 88966701825, 1474541093026, 20922789888001, 400160588853026, 6402373705728001, 133991603578884052, 2457732174030848001, 55735573291977790576, 1124000727777607680001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). D. P. Walsh, A differentiation-based characterization of primes, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 339, #975-11-237. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..450 R. K. Guy, Letter to N. J. A. Sloane, Jul 1988 D. P. Walsh, Primality test based on the generating function D. P. Walsh, A differentiation-based characterization of primes H. S. Wilf, Three problems in combinatorial asymptotics, J. Combin. Theory, A 35 (1983), 199-207. FORMULA a(n) = n!*sum(((n/k)!*k^(n/k))^(-1)) where sum is over all divisors k of n. Exponential generating function [for a(1) through a(n)]= sum(exp(t^k/k)-1, k=1..n). a(n) = (n-1)! + 1 iff n is a prime. EXAMPLE For example, a(4)=10 since, of the 24 permutations of length 4, there are 6 permutations with consist of a single 4-cycle, 3 permutations that consist of two 2-cycles and 1 permutation with four 1-cycles. Also, a(7)=721 since there are 720 permutations with a single cycle of length 7 and 1 permutation with seven 1-cycles. MAPLE a:= n-> n!*add((d/n)^d/d!, d=numtheory[divisors](n)): seq(a(n), n=1..30); # Alois P. Heinz, Nov 07 2012 MATHEMATICA Table[n! Sum[((n/d)!*d^(n/d))^(-1), {d, Divisors[n]}], {n, 21}] (* Jean-François Alcover, Apr 04 2011 *) PROG (Maxima) a(n):= n!*lsum((d!*(n/d)^d)^(-1), d, listify(divisors(n))); makelist(a(n), n, 1, 40); /* Emanuele Munarini, Feb 03 2014 */ CROSSREFS Cf. A038041, A055225, A236696, A317329. Column k=1 of A218868. Sequence in context: A341265 A005158 A182926 * A211208 A303836 A238937 Adjacent sequences: A005222 A005223 A005224 * A005226 A005227 A005228 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane EXTENSIONS Additional comments from Dennis P. Walsh, Dec 08 2000 More terms from Vladeta Jovovic, Dec 01 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:48 EST 2023. Contains 367531 sequences. (Running on oeis4.)