login
A005225
Number of permutations of length n with equal cycles.
(Formerly M0903)
22
1, 2, 3, 10, 25, 176, 721, 6406, 42561, 436402, 3628801, 48073796, 479001601, 7116730336, 88966701825, 1474541093026, 20922789888001, 400160588853026, 6402373705728001, 133991603578884052, 2457732174030848001, 55735573291977790576, 1124000727777607680001
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. P. Walsh, A differentiation-based characterization of primes, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 339, #975-11-237.
FORMULA
a(n) = n!*sum(((n/k)!*k^(n/k))^(-1)) where sum is over all divisors k of n. Exponential generating function [for a(1) through a(n)]= sum(exp(t^k/k)-1, k=1..n).
a(n) = (n-1)! + 1 iff n is a prime.
EXAMPLE
For example, a(4)=10 since, of the 24 permutations of length 4, there are 6 permutations with consist of a single 4-cycle, 3 permutations that consist of two 2-cycles and 1 permutation with four 1-cycles.
Also, a(7)=721 since there are 720 permutations with a single cycle of length 7 and 1 permutation with seven 1-cycles.
MAPLE
a:= n-> n!*add((d/n)^d/d!, d=numtheory[divisors](n)):
seq(a(n), n=1..30); # Alois P. Heinz, Nov 07 2012
MATHEMATICA
Table[n! Sum[((n/d)!*d^(n/d))^(-1), {d, Divisors[n]}], {n, 21}] (* Jean-François Alcover, Apr 04 2011 *)
PROG
(Maxima) a(n):= n!*lsum((d!*(n/d)^d)^(-1), d, listify(divisors(n)));
makelist(a(n), n, 1, 40); /* Emanuele Munarini, Feb 03 2014 */
CROSSREFS
Column k=1 of A218868.
Column k=0 of A364967 (for n>=1).
Sequence in context: A005158 A370608 A182926 * A211208 A303836 A238937
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Dennis P. Walsh, Dec 08 2000
More terms from Vladeta Jovovic, Dec 01 2001
STATUS
approved