login
A370608
a(n) = (n-1)! * Sum_{d|n} 1/((d-1)! * (n/d)!^(d-1)).
1
1, 2, 3, 10, 25, 156, 721, 5356, 40881, 366850, 3628801, 40048086, 479001601, 6228391456, 87184121025, 1307724593176, 20922789888001, 355689166978146, 6402373705728001, 121645161595446490, 2432902128489747201, 51090943465394571376, 1124000727777607680001
OFFSET
1,2
FORMULA
If p is prime, a(p) = 1 + (p-1)!.
E.g.f.: Sum_{k>0} (k-1)! * (exp(x^k/k!)-1).
PROG
(PARI) a(n) = (n-1)!*sumdiv(n, d, 1/((d-1)!*(n/d)!^(d-1)));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (k-1)!*(exp(x^k/k!)-1))))
CROSSREFS
Cf. A370603.
Sequence in context: A341265 A378424 A005158 * A182926 A005225 A211208
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 23 2024
STATUS
approved