login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005222
Number of Dyck paths of knight moves.
(Formerly M3234)
1
1, 0, 1, 0, 4, 4, 18, 26, 86, 158, 462, 976, 2665, 6082, 16040, 38338, 99536, 244880, 631923, 1583796, 4081939, 10358670, 26728731, 68425494, 176964795, 455967376, 1182454137, 3061954102, 7962768190, 20702327552, 53983118006, 140817757006
OFFSET
0,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Recurrence (of order 11)
J. Labelle and Y.-N. Yeh, Dyck paths of knight moves, Discrete Applied Math., 24 (1989), 213-221.
FORMULA
G.f.: A+z^4A^3/(1-zA)^2, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ c * (1+sqrt(3))^n / n^(3/2), where c = sqrt(341*sqrt(3) - 225 + 3*sqrt(46*(197*sqrt(3) - 22))) / (4*sqrt(23*Pi)) = 0.794168381329... - Vaclav Kotesovec, Feb 29 2016
A(x) = x^2*A005220(x)*A005221(x) + x*A005221(x)^2 + A005220(x). - Gheorghe Coserea, Jan 16 2017
MATHEMATICA
A[x_] = (s*(r-1+x-x^3) + x*(1+x)*(3+r*(x-1) + x*(6*x-5)))/(4*x^3) /. s -> Sqrt[2]*Sqrt[1+r-2*x*(2*x+x^3-r)] /. r -> Sqrt[1-4*x*(1-x+x^3)];
A[x] + O[x]^32 // CoefficientList[#, x]& (* Jean-François Alcover, Mar 26 2017, after Gheorghe Coserea *)
CROSSREFS
Sequence in context: A086448 A128090 A119948 * A214166 A214187 A214238
KEYWORD
nonn,easy,nice,walk
EXTENSIONS
More terms from Emeric Deutsch, Dec 17 2003
STATUS
approved