|
|
A119948
|
|
Triangle of denominators in the square of the matrix with A[i,j] = 1/i for j <= i, 0 otherwise.
|
|
4
|
|
|
1, 4, 4, 18, 18, 9, 48, 48, 48, 16, 300, 300, 300, 100, 25, 120, 120, 120, 360, 180, 36, 980, 980, 980, 2940, 1470, 294, 49, 2240, 2240, 2240, 6720, 6720, 1344, 448, 64, 22680, 22680, 22680, 22680, 22680, 4536
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The triangle of the corresponding numerators is A119947. The rationals appear in lowest terms.
The least common multiple (LCM) of row i gives [1, 4, 18, 48, 300, 360, 2940, 6720, 22680, ...], which coincides with A081528.
|
|
LINKS
|
|
|
FORMULA
|
T(i,j) = denominator((A^2)[i,j]), where the lower triangular matrix A has elements a[i,j] = 1/i if j <= i, 0 if j > i.
|
|
EXAMPLE
|
The first rows of the table are:
[1];
[4, 4];
[18, 18, 9];
[48, 48, 48, 16];
[300, 300, 300, 100, 25];
[120, 120, 120, 360, 180, 36]; ...
|
|
PROG
|
(PARI) A119948_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n, r, apply(denominator, M[r, 1..r]))} \\ M. F. Hasler, Nov 05 2019
|
|
CROSSREFS
|
Row sums give A119950. Row sums of the triangle of rationals always give 1.
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|