

A119948


Triangle of denominators in the square of the matrix with A[i,j] = 1/i for j <= i, 0 otherwise.


4



1, 4, 4, 18, 18, 9, 48, 48, 48, 16, 300, 300, 300, 100, 25, 120, 120, 120, 360, 180, 36, 980, 980, 980, 2940, 1470, 294, 49, 2240, 2240, 2240, 6720, 6720, 1344, 448, 64, 22680, 22680, 22680, 22680, 22680, 4536
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The triangle of the corresponding numerators is A119947. The rationals appear in lowest terms.
The least common multiple (LCM) of row i gives [1, 4, 18, 48, 300, 360, 2940, 6720, 22680, ...], which coincides with A081528.


LINKS

Table of n, a(n) for n=1..42.


FORMULA

T(i,j) = denominator((A^2)[i,j]), where the lower triangular matrix A has elements a[i,j] = 1/i if j <= i, 0 if j > i.


EXAMPLE

The first rows of the table are:
[1];
[4, 4];
[18, 18, 9];
[48, 48, 48, 16];
[300, 300, 300, 100, 25];
[120, 120, 120, 360, 180, 36]; ...


PROG

(PARI) A119948_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n, r, apply(denominator, M[r, 1..r]))} \\ M. F. Hasler, Nov 05 2019


CROSSREFS

Row sums give A119950. Row sums of the triangle of rationals always give 1.
Sequence in context: A116561 A086448 A128090 * A005222 A214166 A214187
Adjacent sequences: A119945 A119946 A119947 * A119949 A119950 A119951


KEYWORD

nonn,easy,frac,tabl


AUTHOR

Wolfdieter Lang, Jul 20 2006


EXTENSIONS

Edited by M. F. Hasler, Nov 05 2019


STATUS

approved



