login
A214166
T(n,k)=Number of 0..5 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..5 introduced in row major order
14
1, 1, 4, 4, 18, 34, 11, 337, 902, 481, 41, 5994, 88261, 60320, 8731, 161, 121778, 7386816, 27240856, 4242606, 174454, 694, 2518082, 655418810, 9601970064, 8548472292, 300785428, 3603244, 3151, 52655411, 57661437162, 3598372134742
OFFSET
1,3
COMMENTS
Table starts
....1.......1..........4.............11................41..................161
....4......18........337...........5994............121778..............2518082
...34.....902......88261........7386816.........655418810..........57661437162
..481...60320...27240856.....9601970064.....3598372134742.....1329144373535118
.8731.4242606.8548472292.12515731371696.19767477649307133.30641183868207736684
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 32*a(n-1) -262*a(n-2) +672*a(n-3) -441*a(n-4)
k=2: a(n) = 84*a(n-1) -945*a(n-2) +1562*a(n-3)
k=3: a(n) = 370*a(n-1) -18411*a(n-2) +297448*a(n-3) -1839799*a(n-4) +4424682*a(n-5) -4113757*a(n-6) +1249468*a(n-7)
k=4: a(n) = 1402*a(n-1) -130492*a(n-2) +2979072*a(n-3) -15573492*a(n-4) +12571416*a(n-5)
k=5: (order 15)
Empirical for row n:
n=1: a(k)=10*a(k-1)-30*a(k-2)+20*a(k-3)+31*a(k-4)-30*a(k-5)
n=2: a(k)=21*a(k-1)+49*a(k-2)-959*a(k-3)-1869*a(k-4)+7679*a(k-5)+15051*a(k-6)-6741*a(k-7)-13230*a(k-8)
n=3: (order 22)
n=4: (order 60)
EXAMPLE
Some solutions for n=4 k=1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..2....1..2....1..2....1..2....1..2....1..0....1..0....1..0....2..3....2..3
..3..4....0..1....3..0....2..0....0..3....2..1....2..3....2..3....3..1....0..1
..5..3....1..0....0..4....0..2....1..2....0..2....0..4....1..0....4..2....1..3
CROSSREFS
Column 1 is A198900
Sequence in context: A128090 A119948 A005222 * A214187 A214238 A133039
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 05 2012
STATUS
approved