login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133039 a(n) = P(n)^3 - P(n)^2 where P(n) = A000931(n). 1
0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 18, 48, 100, 294, 648, 1584, 3840, 8820, 21168, 49284, 115248, 270400, 628660, 1468548, 3420150, 7960000, 18539400, 43120350, 100328400, 233365440, 542672640, 1262045880, 2934442944, 6822962664, 15863704528, 36881698048, 85746672900, 199347278724, 463445232298 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,2,1,-9,3,-9,3,-3,15,-9,9,-3,1,-2,1,-1).
FORMULA
a(n) = P(n)^3 - P(n)^2 = A000931(n)^3 - A000931(n)^2.
G.f.: 2*x^8*(x^7-x^6+2*x^5+x^2-2*x+2) / ((x-1) * (x^3-2*x^2+3*x-1) * (x^3-x^2+2*x-1) * (x^3-x-1) * (x^6+3*x^5+5*x^4+5*x^3+5*x^2+3*x+1)). - Colin Barker, Sep 18 2013
EXAMPLE
a(10)=18 because Padovan(10)=3 and 3^3=27 and 3^2=9 and 27-9=18.
MATHEMATICA
P[0] := 1; P[1] := 0; P[2] := 0; P[n_] := P[n] = P[n - 2] + P[n - 3]; Table[P[n]^3 - P[n]^2, {n, 0, 50}] (* G. C. Greubel, Oct 02 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(2*x^8*(x^7-x^6+2*x^5+x^2-2*x+2)/((x -1)*(x^3-2*x^2+3*x-1)*(x^3-x^2+2*x-1)*(x^3-x-1)*(x^6+3*x^5+5*x^4 +5*x^3 +5*x^2+3*x+1)))) \\ G. C. Greubel, Oct 02 2017
CROSSREFS
Cf. A000290, A000578, A045991. Padovan sequence: A000931.
Sequence in context: A214166 A214187 A214238 * A177117 A272321 A272290
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 02 2007
EXTENSIONS
Incorrect initial zero of the sequence deleted by Colin Barker, Sep 18 2013
Added more terms, Joerg Arndt, Sep 18 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 13:22 EDT 2024. Contains 375730 sequences. (Running on oeis4.)