login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005220
Number of Dyck paths of knight moves.
(Formerly M2256)
6
1, 0, 1, 0, 3, 2, 12, 14, 54, 86, 274, 528, 1515, 3266, 8854, 20422, 53786, 129368, 336103, 830148, 2145020, 5390580, 13913325, 35378586, 91415954, 234397542, 606983495, 1566013450, 4065765499, 10540066710, 27437831060, 71404804002
OFFSET
0,5
COMMENTS
A Dyck path of knight moves of size n is a path in ZxZ which:
(1) is made only of steps NNE, NEE, SSE and SEE;
(2) starts at (0,0) and ends at (n,0);
(3) never goes strictly below the x-axis. - Gheorghe Coserea, Jan 16 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
J. Labelle and Y.-N. Yeh, Dyck paths of knight moves, Discrete Applied Math., 24 (1989), 213-221.
FORMULA
G.f.: (1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ (2+sqrt(3))*(sqrt(3*(7*sqrt(3)-3)/46)-sqrt((9-5*sqrt(3))/2)) * (1+sqrt(3))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
a(n) = Sum_{m=0..n}((Sum_{j=ceiling(m/2)..m}(binomial(j,m-j)*binomial(m+1,j)))* Sum_{k=0..n-m}((binomial(m+2*k,k)*Sum_{l=0..k}(binomial(k,l)*binomial(k-l,n-m-3*l-k)*(-1)^(n-l-k)))/(m+k+1))). - Vladimir Kruchinin, Mar 05 2016
0 = x^4*y^4 - x^2*(2*x+1)*y^3 + x*(x^3+2*x+2)*y^2 - (2*x+1)*y + 1, where y is the g.f. - Gheorghe Coserea, Jan 16 2017
MATHEMATICA
gf = (1 + 2z + Sqrt[1 - 4z + 4z^2 - 4z^4] - Sqrt[2]*Sqrt[1 - 4z^2 - 2z^4 + (2z + 1)*Sqrt[1 - 4z + 4z^2 - 4z^4]])/(4z^2); CoefficientList[gf + O[z]^32, z] (* Jean-François Alcover, Jul 16 2015 *)
PROG
(Maxima)
a(n):=sum((sum(binomial(j, m-j)*binomial(m+1, j), j, ceiling(m/2), m))*sum((binomial(m+2*k, k)*sum(binomial(k, l)*binomial(k-l, n-m-3*l-k)*(-1)^(n-l-k), l, 0, k))/(m+k+1), k, 0, n-m), m, 0, n); /* Vladimir Kruchinin, Mar 05 2016 */
(PARI)
x='x; y='y;
Fxy = x^4*y^4 - x^2*(2*x+1)*y^3 + x*(x^3+2*x+2)*y^2 - (2*x+1)*y + 1;
seq(N) = {
my(y0 = 1 + O('x^N), y1=0, dFxy=deriv(Fxy, 'y));
for (k = 1, N,
y1 = y0 - subst(Fxy, 'y, y0)/subst(dFxy, 'y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
seq(32) \\ Gheorghe Coserea, Jan 16 2017
CROSSREFS
Cf. A285174.
Sequence in context: A258206 A258019 A057779 * A243660 A220883 A253246
KEYWORD
nonn,easy,nice,walk
EXTENSIONS
More terms from Emeric Deutsch, Dec 17 2003
STATUS
approved