login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243660
Triangle read by rows: the x = 1+q Narayana triangle at m=2.
4
1, 3, 2, 12, 16, 5, 55, 110, 70, 14, 273, 728, 702, 288, 42, 1428, 4760, 6160, 3850, 1155, 132, 7752, 31008, 50388, 42432, 19448, 4576, 429, 43263, 201894, 395010, 418950, 259350, 93366, 18018, 1430, 246675, 1315600, 3010700, 3853696, 3010700, 1466080, 433160, 70720, 4862
OFFSET
1,2
COMMENTS
See Novelli-Thibon (2014) for precise definition.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*...*(x+2n+1) / (n! * (2n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
The Maple code T(n,k) := binomial(3*n+1-k,n-k)*binomial(2*n,k-1)/n: with(sumtools): sumrecursion( (-1)^(k+1)*T(n,k)*binomial(x+3*n-k+1, 3*n-k+1), k, s(n) ); returns the recurrence 2*(2*n+1)*n^2*s(n) = (x+n)*(x+2*n)*(x+2*n+1)*s(n-1). The above observation follows from this. - Peter Bala, Oct 30 2022
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 8.
FORMULA
From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n.
More generally: T(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n, where m = 2.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)
EXAMPLE
Triangle begins:
1;
3, 2;
12, 16, 5;
55, 110, 70, 14;
273, 728, 702, 288, 42;
1428, 4760, 6160, 3850, 1155, 132;
...
MATHEMATICA
polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;
P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1);
T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];
T[2] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
PROG
(PARI)
N(n, m)=sum(k=0, n, binomial(m*n+1, k)*binomial((m+1)*n-k, n-k)*(1-x)^k*x^(n-k))/(m*n+1);
T(m)=for(i=1, 20, z=subst(polrecip(N(i, m)), x, 1+q); print(Vecrev(z)));
T(2) /* Lars Blomberg, Jul 17 2017 */
(PARI) T(n, k) = binomial(3*n+1-k, n-k) * binomial(2*n, k-1) / n; \\ Andrew Howroyd, Nov 23 2018
CROSSREFS
Row sums give A034015(n-1).
The case m=1 is A126216 or A033282 (its mirror image).
The case m=3 is A243661.
The right diagonal is A000108.
The left column is A001764.
Sequence in context: A258019 A057779 A005220 * A220883 A253246 A152550
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 13 2014
EXTENSIONS
Corrected example and a(22)-a(43) from Lars Blomberg, Jul 12 2017
a(44)-a(45) from Werner Schulte, Nov 23 2018
STATUS
approved