|
|
A243663
|
|
Triangle read by rows: the reversed x = 1+q Narayana triangle at m=3.
|
|
2
|
|
|
1, 4, 1, 22, 11, 1, 140, 105, 21, 1, 969, 969, 306, 34, 1, 7084, 8855, 3850, 700, 50, 1, 53820, 80730, 44850, 11500, 1380, 69, 1, 420732, 736281, 498771, 166257, 28665, 2457, 91, 1, 3362260, 6724520, 5379616, 2215136, 503440, 62930, 4060, 116, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See Novelli-Thibon (2014) for precise definition.
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..11325
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014. See Fig. 11.
|
|
FORMULA
|
T(n,k) = binomial(4*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n, more generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n and some fixed integer m > 1. - Werner Schulte, Nov 22 2018
|
|
EXAMPLE
|
Triangle begins:
1
4, 1
22, 11, 1
140, 105, 21, 1
969, 969, 306, 34, 1
7084, 8855, 3850, 700, 50, 1
...
|
|
MATHEMATICA
|
T[m_][n_, k_] := Binomial[(m + 1) n + 1 - k, n - k] Binomial[n, k - 1]/n;
Table[T[3][n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
|
|
CROSSREFS
|
Cf. A001263, A243662 (m=2).
Sequence in context: A299445 A135049 A113384 * A039812 A308559 A249268
Adjacent sequences: A243660 A243661 A243662 * A243664 A243665 A243666
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
N. J. A. Sloane, Jun 13 2014
|
|
EXTENSIONS
|
More terms from Werner Schulte, Nov 22 2018
|
|
STATUS
|
approved
|
|
|
|