login
A243662
Triangle read by rows: the reversed x = 1+q Narayana triangle at m=2.
4
1, 3, 1, 12, 8, 1, 55, 55, 15, 1, 273, 364, 156, 24, 1, 1428, 2380, 1400, 350, 35, 1, 7752, 15504, 11628, 4080, 680, 48, 1, 43263, 100947, 92169, 41895, 9975, 1197, 63, 1, 246675, 657800, 708400, 396704, 123970, 21560, 1960, 80, 1, 1430715, 4292145, 5328180, 3552120, 1381380, 318780, 42504, 3036, 99, 1
OFFSET
1,2
COMMENTS
See Novelli-Thibon (2014) for precise definition.
From Tom Copeland, Dec 13 2022: (Start)
The row polynomials are the nonvanishing numerator polynomials generated in the compositional, or Lagrange, inversion in x about the origin of the odd o.g.f. Od1(x,t) = x*(t*(1-x^2)-x^2) / (1-x^2) = t*x - x^3 - x^5 - x^7 - x^9 - ... .
For example, from the Lagrange inversion formula (LIF), the tenth derivative in x of (x/Od1(x,t))^11 / 11! = (1/((t*(1-x^2)-x^2) / (1-x^2)))^11 / 11! at x = 0 is (t^4 + 24*t^3 + 156*t^2 + 364*t + 273) / t^16. These polynomials are also generated by the iterated derivatives ((1/(D Od1(x,t)) D)^n g(x) evaluated at x = 0 where D = d/dx.
An explicit generating function for the polynomials can be obtained by finding the solution of the cubic equation y - t*x - y*x^2 + (1+t)*x^3 = 0 for x in terms of y and t that satisfies y(x=0;t) = 0 = x(y=0;t).
The row polynomials are also the polynomials generated in the compositional inverse of O(x,t) = x / (1+(1+t)x)*(1+x)^2) = x + (-t - 3)*x^2 + (t^2 + 4 t + 6)*x^3 + (-t^3 - 5*t^2 - 10*t - 10)*x^4 + ..., containing the truncated Pascal polynomials of A104712 / A325000.
For example, from the LIF, the third derivative of ((1 + (1+t)*x)*(1+x)^2)^4 / 4! at x = 0 is 55 + 55*t + 15*t^2 + t^3.
A natural refinement of this array was provided in a letter by Isaac Newton in 1676--a set of partition polynomials for generating the o.g.f. of the compositional inverse of the generic odd o.g.f. x + u_1 x^3 + u_2 x^5 + ... in the infinite set of indeterminates u_n. (End)
T(n,k) is the number of noncrossing cacti with n+1 nodes and n+1-k blocks. See A361242. - Andrew Howroyd, Apr 13 2023
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 10.
FORMULA
T(n,k) = (binomial(3*n+1,n) * binomial(n,k-1) * binomial(n-1,k-1)) / (binomial(3*n,k-1) * (3*n+1)) = (A001764(n) * A001263(n,k) * k) / binomial(3*n,k-1) for 1 <= k <= n (conjectured). - Werner Schulte, Nov 22 2018
T(n,k) = binomial(3*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n, more generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n and some fixed integer m > 1. - Werner Schulte, Nov 22 2018
G.f.: A(x,y) is the series reversion of x/((1 + x + x*y)*(1 + x)^2). - Andrew Howroyd, Apr 13 2023
EXAMPLE
Triangle begins:
1;
3, 1;
12, 8, 1;
55, 55, 15, 1;
273, 364, 156, 24, 1;
1428, 2380, 1400, 350, 35, 1;
...
MATHEMATICA
T[m_][n_, k_] := Binomial[(m + 1) n + 1 - k, n - k] Binomial[n, k - 1]/n;
Table[T[2][n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
PROG
(PARI)
T(n)=[Vecrev(p) | p<-Vec(serreverse(x/((1+x+x*y)*(1+x)^2) + O(x*x^n)))]
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Apr 13 2023
CROSSREFS
Cf. A001764, A001263, A243663 (m=3).
Row sums give A003168.
Row reversed triangle is A102537.
Sequence in context: A049458 A143492 A375046 * A062139 A156366 A144353
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 13 2014
EXTENSIONS
Data and Example (T(2,2) and T(5,3)) corrected and more terms added by Werner Schulte, Nov 22 2018
STATUS
approved