login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375046
Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = 2^n and t(x) = x+2. See Comments.
1
3, 1, 12, 7, 1, 72, 54, 13, 1, 720, 612, 184, 23, 1, 12960, 11736, 3924, 598, 41, 1, 440640, 411984, 145152, 24256, 1992, 75, 1, 29082240, 27631584, 9992016, 1746048, 155728, 6942, 141, 1, 3780691200, 3621188160, 1326593664, 236978256, 21990688, 1058188
OFFSET
1,1
COMMENTS
See A374848 for the definition of obverse convolution and a guide to related sequences and arrays.
EXAMPLE
First 3 polynomials in s(x)**t(x) are
3 + x,
12 + 7 x + x^2,
72 + 54 x + 13 x^2 + x^3.
First 5 rows of array:
3 1
12 7 1
72 54 13 1
720 612 184 23 1
12960 11736 3924 598 41 1
MATHEMATICA
s[n_] := 2^n x; t[n_] := x + 2;
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[Expand[u[n]], {n, 0, 10}]
Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *)
Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
CROSSREFS
Cf. A000079, A139486 (column 1), A000012 (T(n,n+1)), A374848.
Sequence in context: A133366 A049458 A143492 * A243662 A062139 A156366
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Sep 15 2024
STATUS
approved