login
A375043
Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+2. See Comments.
3
2, 1, 4, 6, 2, 8, 32, 34, 10, 16, 144, 388, 360, 100, 32, 560, 3224, 7316, 6320, 1700, 64, 1952, 21008, 98456, 202856, 167720, 44200, 128, 6272, 114240, 974208, 4048584, 7841112, 6294040, 1635400, 256, 18944, 542080, 7660416, 56807568, 218111424, 404643680
OFFSET
1,1
COMMENTS
See A374848 for the definition of obverse convolution and a guide to related sequences and arrays.
EXAMPLE
First 3 polynomials in s(x)**t(x) are
2 + x,
4 + 6 x + 2 x^2,
8 + 32 x + 34 x^2 + 10 x^3.
First 5 rows of array:
2 1
4 6 2
8 32 34 10
16 144 388 360 100
32 560 3224 7316 6320 1700
MATHEMATICA
s[n_] := n^2 x; t[n_] := x + 2;
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[Expand[u[n]], {n, 0, 10}]
Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *)
Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
CROSSREFS
Cf. A000290, A101686 (T(n,n+1)), A374848, A375041, A375042.
Sequence in context: A323286 A193818 A127535 * A285491 A257640 A262930
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Sep 14 2024
STATUS
approved