login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375048
Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = x+F(n) and t(x) = F(n), where F(n) = n-th Fibonacci number (A000045). See Comments.
3
0, 1, 1, 2, 1, 2, 5, 4, 1, 16, 32, 24, 8, 1, 162, 297, 216, 78, 14, 1, 3600, 5640, 3649, 1248, 238, 24, 1, 147456, 196608, 110848, 34240, 6256, 676, 40, 1, 12320100, 13667940, 6521589, 1746426, 286843, 29568, 1867, 66, 1, 2058386904, 1878686460, 746158770
OFFSET
1,4
COMMENTS
See A374848 for the definition of obverse convolution and a guide to related sequences and arrays.
EXAMPLE
First 3 polynomials in s(x)**t(x) are
0 + x,
1 + 2 x + x^2,
2 + 4 x + 4 x^2 + x^3.
First 5 rows of array:
0 1
1 2 1
2 5 4 1
16 32 24 8 1
162 297 216 78 14 1
MATHEMATICA
s[n_] := x + Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[Expand[u[n]], {n, 0, 10}]
Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *)
Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
CROSSREFS
Sequence in context: A121435 A137156 A136457 * A209133 A078016 A078046
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Sep 15 2024
STATUS
approved