login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121435
Matrix inverse of triangle A122175, where A122175(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.
3
1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 7, -19, 18, -7, 1, -37, 104, -106, 49, -11, 1, 268, -766, 809, -406, 110, -16, 1, -2496, 7197, -7746, 4060, -1210, 216, -22, 1, 28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1, -391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1
OFFSET
0,5
FORMULA
(1) T(n,k) = A121434(n-1,k) - A121434(n-1,k+1).
(2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 1)](n,k); i.e., column k equals signed column k of matrix power A107876^(k*(k+1)/2 + 1).
G.f.s for column k:
(3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 1);
(4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 1).
EXAMPLE
Triangle begins:
1;
-1, 1;
1, -2, 1;
-2, 5, -4, 1;
7, -19, 18, -7, 1;
-37, 104, -106, 49, -11, 1;
268, -766, 809, -406, 110, -16, 1;
-2496, 7197, -7746, 4060, -1210, 216, -22, 1;
28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1;
-391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1; ...
PROG
(PARI) /* Matrix Inverse of A122175 */ T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial((c-1)*(c-2)/2+r-1, r-c)))); return((M^-1)[n+1, k+1])
(PARI) /* Obtain by G.F. */ T(n, k)=polcoeff(1-sum(j=0, n-k-1, T(j+k, k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+1)), n-k)
CROSSREFS
Cf. A098568, A107876; unsigned columns: A107877, A107882.
Sequence in context: A201780 A337991 A104560 * A137156 A136457 A375048
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Aug 27 2006
STATUS
approved