Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 12 2018 22:44:23
%S 1,-1,1,1,-2,1,-2,5,-4,1,7,-19,18,-7,1,-37,104,-106,49,-11,1,268,-766,
%T 809,-406,110,-16,1,-2496,7197,-7746,4060,-1210,216,-22,1,28612,
%U -82910,90199,-48461,15235,-3032,385,-29,1,-391189,1136923,-1244891,678874,-220352,46732,-6699,638,-37,1
%N Matrix inverse of triangle A122175, where A122175(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.
%F (1) T(n,k) = A121434(n-1,k) - A121434(n-1,k+1).
%F (2) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2 + 1)](n,k); i.e., column k equals signed column k of matrix power A107876^(k*(k+1)/2 + 1).
%F G.f.s for column k:
%F (3) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2 + 1);
%F (4) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2 + 1).
%e Triangle begins:
%e 1;
%e -1, 1;
%e 1, -2, 1;
%e -2, 5, -4, 1;
%e 7, -19, 18, -7, 1;
%e -37, 104, -106, 49, -11, 1;
%e 268, -766, 809, -406, 110, -16, 1;
%e -2496, 7197, -7746, 4060, -1210, 216, -22, 1;
%e 28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1;
%e -391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1; ...
%o (PARI) /* Matrix Inverse of A122175 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r-1,r-c)))); return((M^-1)[n+1,k+1])
%o (PARI) /* Obtain by G.F. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+1)), n-k)
%Y Cf. A098568, A107876; unsigned columns: A107877, A107882.
%K sign,tabl
%O 0,5
%A _Paul D. Hanna_, Aug 27 2006