login
A337991
Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.
1
1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
OFFSET
0,5
FORMULA
G.f.: ( 1 - x*(y-1)- sqrt(x^2*(y^2-2*y-3) - 2*x*(y+1) + 1) )/(2*x).
From G. C. Greubel, Oct 31 2024: (Start)
T(n, k) = binomial(n, 1-k)*binomial(n+k-1, k)*Hypergeometric3F2([1-n, (1 -n -k)/2, (2-n-k)/2], [2-k, 1-n-k], 4), with T(0, 0) = 1.
T(n, 0) = A086246(n+1).
T(n, n-1) = A000124(n-1), n >= 1.
T(n, n-2) = A006008(n-1), n >= 2.
T(n, n-3) = (1/72)*(n^4 -6*n^3 +47*n^2 -114*n +144)*binomial(n-1,2), n >= 3.
T(n, n-4) = (1/480)*(n-2)*(n^4 -8*n^3 +99*n^2 -332*n +960)*binomial(n-1,3), n >= 4.
Sum_{k=0..n} T(n, k) = A025227(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A102407(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A019590(n+1). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
2, 5, 4, 1;
4, 13, 15, 7, 1;
9, 35, 52, 36, 11, 1;
21, 96, 175, 160, 75, 16, 1;
51, 267, 576, 655, 415, 141, 22, 1;
...
MATHEMATICA
T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
PROG
(Maxima)
T(n, m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n, i-m)*binomial(n+m-i, i-1)*binomial(n+m-i, m), i, 1, n)/n;
(Magma)
B:=Binomial;
A337991:= func< n, k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
[A337991(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
(Python)
def A337991(n, k):
b=binomial
if n==0: return 1
else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1, n+1))
# SageMath
flatten([[A337991(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024
CROSSREFS
Diagonals include: A000124, A006008.
Sums include: A000007 (signed row), A019590 (signed diagonal), A025227 (row), A102407 (diagonal).
Sequence in context: A151703 A151691 A201780 * A104560 A121435 A137156
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Oct 06 2020
STATUS
approved