login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337988
Numbers that are the sum of the squares of two of their distinct divisors.
2
20, 80, 90, 180, 272, 320, 360, 468, 500, 650, 720, 810, 980, 1088, 1280, 1332, 1440, 1620, 1872, 2000, 2250, 2420, 2448, 2450, 2600, 2880, 2900, 3240, 3380, 3600, 3920, 4160, 4212, 4352, 4410, 4500, 5120, 5328, 5760, 5780, 5850, 6480, 6642, 6800, 7220, 7290, 7488, 7650
OFFSET
1,1
EXAMPLE
20 = 2^2 + 4^2, so 20 is in the sequence.
MATHEMATICA
Select[Range[10^4], 1 == Catch@ Do[Do[If[#2[[i]]^2 + #2[[j]]^2 == #1, Throw[1]], {j, i + 1, #3}], {i, #3}] & @@ {#, Divisors[#], DivisorSigma[0, #]} &] (* Michael De Vlieger, Oct 10 2020 *)
PROG
(PARI) isok(m) = {my(d=divisors(m)); for (i=2, #d, for (j=1, i-1, if (d[i]^2+d[j]^2 == m, return (1)); ); ); } \\ Michel Marcus, Oct 07 2020
(Python)
from sympy import divisors, integer_nthroot
A337988_list = []
for n in range(1, 10**6):
for d in divisors(n):
if 2*d*d >= n:
break
a, b = integer_nthroot(n-d*d, 2)
if b and n % a == 0:
A337988_list.append(n)
break # Chai Wah Wu, Oct 30 2020
CROSSREFS
Cf. A000404.
Sequence in context: A083127 A211613 A292360 * A002609 A195322 A200424
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 06 2020
EXTENSIONS
More terms from Michel Marcus, Oct 07 2020
STATUS
approved