login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201780
Riordan array ((1-x)^2/(1-2x), x/(1-2x)).
11
1, 0, 1, 1, 2, 1, 2, 5, 4, 1, 4, 12, 13, 6, 1, 8, 28, 38, 25, 8, 1, 16, 64, 104, 88, 41, 10, 1, 32, 144, 272, 280, 170, 61, 12, 1, 64, 320, 688, 832, 620, 292, 85, 14, 1, 128, 704, 1696, 2352, 2072, 1204, 462, 113, 16, 1
OFFSET
0,5
COMMENTS
Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).
LINKS
Benjamin Braun, W. K. Hough, Matching and Independence Complexes Related to Small Grids, arXiv preprint arXiv:1606.01204 [math.CO], 2016.
Wesley K. Hough, On Independence, Matching, and Homomorphism Complexes, (2017), Theses and Dissertations--Mathematics, 42.
FORMULA
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).
EXAMPLE
Triangle begins:
1;
0, 1;
1, 2, 1;
2, 5, 4, 1;
4, 12, 13, 6, 1;
8, 28, 38, 25, 8, 1;
MATHEMATICA
CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
Row sums: A052156
Sequence in context: A099602 A151703 A151691 * A337991 A104560 A121435
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 05 2011
STATUS
approved