OFFSET
0,5
COMMENTS
Diagonals ascending: 1, 0, 1, 1, 2, 2, 4, 5, 1, 8, 12, 4, ... (see A201509).
LINKS
Benjamin Braun, W. K. Hough, Matching and Independence Complexes Related to Small Grids, arXiv preprint arXiv:1606.01204 [math.CO], 2016.
Wesley K. Hough, On Independence, Matching, and Homomorphism Complexes, (2017), Theses and Dissertations--Mathematics, 42.
FORMULA
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 0, T(1,0) = 0, T(2,0) = 0 and T(n,k)= 0 if k < 0 or if n < k.
Sum_{k=0..n} T(n,k)*x^k = A154955(n+1), A034008(n), A052156(n), A055841(n), A055842(n), A055846(n), A055270(n), A055847(n), A055995(n), A055996(n), A056002(n), A056116(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)^2/(1-(y+2)*x).
EXAMPLE
Triangle begins:
1;
0, 1;
1, 2, 1;
2, 5, 4, 1;
4, 12, 13, 6, 1;
8, 28, 38, 25, 8, 1;
MATHEMATICA
CoefficientList[#, y]& /@ CoefficientList[(1-x)^2/(1-(y+2)*x) + O[x]^10, x] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Dec 05 2011
STATUS
approved