OFFSET
0,3
COMMENTS
This is the pseudo-triangle whose successive lines are of the type T(n,0), T(n,1)+T(n-1,0), T(n,2)+T(n-1,1), ... T(n,k)+T(n-1,k-1), without 0's, with T=A201701. [e-mail, Philippe Deléham, Dec 04 2011]
FORMULA
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k. - Philippe Deléham, Dec 05 2011
The n-th row polynomial appears to equal Sum_{k = 1..floor((n+1)/2)} binomial(n,2*k-1)*(1+t)^k. Cf. A034867. - Peter Bala, Sep 10 2012
Aside from the first two rows below, the signed coefficients appear in the expansion (b*x - 1)^2 / (a*b*x^2 - 2a*x + 1) = 1 + (2 a - 2 b)x + (4 a^2 - 5 a b + b^2)x^2 + (8 a^3 - 12 a^2b + 4 ab^2)x^3 + ..., the reciprocal of the derivative of x*(1-a*x) / (1-b*x). This is related to A263633 via the expansion (a*b*x^2 - 2a*x + 1) / (b*x - 1)^2 = 1 + (b - a) (2x + 3b x^2 + 4b^2 x^3 + ...). See also A201780. - Tom Copeland, Oct 30 2023
EXAMPLE
Triangle starts:
1 1
2 2
4 5 1
8 12 4
16 28 13 1
32 64 38 6
64 144 104 25 1
128 320 272 88 8
...
Triangle begins (full version):
0
1, 1
2, 2, 0
4, 5, 1, 0
8, 12, 4, 0, 0
16, 28, 13, 1, 0, 0
32, 64, 38, 6, 0, 0, 0
64, 144, 104, 25, 1, 0, 0, 0
128, 320, 272, 88, 8, 0, 0, 0, 0
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul Curtz, Dec 02 2011
EXTENSIONS
Edited and new name using Philippe Deléham's formula, Joerg Arndt, Dec 13 2023
STATUS
approved