login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211188
a(n) is the number of distinct prime divisors among all the composites of the form k^2 + 1 between the two primes A002496(n) and A002496(n+1).
2
0, 2, 2, 4, 5, 2, 5, 6, 2, 13, 5, 17, 3, 12, 11, 15, 9, 6, 21, 11, 6, 7, 3, 7, 7, 18, 7, 10, 6, 14, 11, 7, 6, 29, 2, 6, 22, 10, 10, 6, 16, 12, 6, 5, 11, 15, 6, 24, 12, 13, 19, 21, 15, 45, 3, 17, 6, 11, 24, 15, 9, 9, 6, 28, 3, 7, 7, 26, 10, 55, 14, 21, 24, 8
OFFSET
1,2
COMMENTS
a(1)=0; for n > 1, a(n) = number of elements of each row in A211175(n).
LINKS
MAPLE
with(numtheory) :lst:={}: for n from 2 to 600 do:p:=n^2+1:x:=factorset(p):lst:=lst union x:if type(p, prime)=true then m:=nops(lst minus {p}): printf(`%d, `, m):lst:={}:else fi:od:
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 03 2013
STATUS
approved