|
|
A151703
|
|
a(0)=1, a(1)=0; a(2^i+j) = a(j) + 2*a(j+1) for 0 <= j < 2^i.
|
|
17
|
|
|
1, 0, 1, 2, 1, 2, 5, 4, 1, 2, 5, 4, 5, 12, 13, 6, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 5, 12, 13, 14, 29, 38, 25, 16, 29, 38, 41, 72, 105, 88, 41, 10, 1, 2, 5, 4, 5, 12, 13, 6, 5, 12, 13, 14, 29, 38, 25, 8, 5, 12, 13, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Ivan Neretin, Table of n, a(n) for n = 0..8191
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
|
|
MAPLE
|
See A151702 for Maple code.
|
|
MATHEMATICA
|
a = {1, 0}; Do[AppendTo[a, a[[j]] + 2 a[[j + 1]]], {i, 6}, {j, 2^i}]; a (* Ivan Neretin, Jul 04 2017 *)
|
|
CROSSREFS
|
For the recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D) see: (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.
If first two terms are dropped, same as A151691.
Sequence in context: A348373 A106480 A099602 * A151691 A201780 A337991
Adjacent sequences: A151700 A151701 A151702 * A151704 A151705 A151706
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jun 06 2009
|
|
STATUS
|
approved
|
|
|
|